Zigzag Turning Preference of Freely Crawling Cells
نویسندگان
چکیده
The coordinated motion of a cell is fundamental to many important biological processes such as development, wound healing, and phagocytosis. For eukaryotic cells, such as amoebae or animal cells, the cell motility is based on crawling and involves a complex set of internal biochemical events. A recent study reported very interesting crawling behavior of single cell amoeba: in the absence of an external cue, free amoebae move randomly with a noisy, yet, discernible sequence of 'run-and-turns' analogous to the 'run-and-tumbles' of swimming bacteria. Interestingly, amoeboid trajectories favor zigzag turns. In other words, the cells bias their crawling by making a turn in the opposite direction to a previous turn. This property enhances the long range directional persistence of the moving trajectories. This study proposes that such a zigzag crawling behavior can be a general property of any crawling cells by demonstrating that 1) microglia, which are the immune cells of the brain, and 2) a simple rule-based model cell, which incorporates the actual biochemistry and mechanics behind cell crawling, both exhibit similar type of crawling behavior. Almost all legged animals walk by alternating their feet. Similarly, all crawling cells appear to move forward by alternating the direction of their movement, even though the regularity and degree of zigzag preference vary from one type to the other.
منابع مشابه
Zigzag Generalized Lévy Walk: the In Vivo Search Strategy of Immunocytes
Immune responses are based on the coordinated searching behaviors of immunocytes that are aimed at tracking down specific targets. The search efficiency of immunocytes significantly affects the speed of initiation and development of immune responses. Previous studies have shown that not only the intermittent walk but also the zigzag turning preference of immunocytes contributes to the search ef...
متن کاملMigration of T Cells on Surfaces Containing Complex Nanotopography
T cells navigate complex microenvironments to initiate and modulate antigen-specific immune responses. While recent intravital microscopy study revealed that migration of T cells were guided by various tissue microstructures containing unique nanoscale topographical structures, the effects of complex nanotopographical structures on the migration of T cells have not been systematically studied. ...
متن کاملCrawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry.
We study a minimal model of a crawling eukaryotic cell with a chemical polarity controlled by a reaction-diffusion mechanism describing Rho GTPase dynamics. The size, shape, and speed of the cell emerge from the combination of the chemical polarity, which controls the locations where actin polymerization occurs, and the physical properties of the cell, including its membrane tension. We find in...
متن کاملStudy of flow and heat transfer characteristics in a periodic zigzag channel for cooling of polymer electrolyte fuel cells
In this study, a periodic zigzag channel with rectangular cross-section has been used in order to obtain a high-efficiency system for cooling a polymer electrolyte fuel cell. An appropriate function of fuel cells and enhancement of their lifetime require uniform temperature conditions of around 80°C. On the other hand, due to volume and weight constraints, a low-density compact heat exchanger i...
متن کاملPhase-Dependent Visual Control of the Zigzag Paths of Navigating Wood Ants
Animals sometimes take sinuous paths to a goal. Insects, tracking an odor trail on the ground [1-3] or moving up an odor plume in the air [4, 5], generally follow zigzag paths. Some insects [6-8] take a zigzag approach to visual targets, perhaps to obtain parallax information. How does an animal keep its overall path in the direction of the goal without disrupting a zigzag pattern? We describe ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011